Improved retrieval step with relevance ranking

This commit is contained in:
Adrian Rumpold
2025-07-01 14:37:52 +02:00
parent 9b738425c0
commit 87a17331fd

View File

@@ -18,7 +18,7 @@ from hn import HackerNewsClient, Story
from scrape import JinaScraper from scrape import JinaScraper
NUM_STORIES = 20 NUM_STORIES = 20
USER_PREFERENCES = ["Machine Learning", "Linux", "Open-Source"] USER_PREFERENCES = ["Machine Learning", "Programming", "Robotics"]
ENABLE_SLACK = True # Send updates to Slack, need to set SLACK_BOT_TOKEN env var ENABLE_SLACK = True # Send updates to Slack, need to set SLACK_BOT_TOKEN env var
ENABLE_MLFLOW_TRACING = False # Use MLflow (at http://localhost:5000) for tracing ENABLE_MLFLOW_TRACING = False # Use MLflow (at http://localhost:5000) for tracing
@@ -44,27 +44,45 @@ class State(TypedDict):
summaries: list[dict] summaries: list[dict]
def retrieve(state: State, top_n: int = 5) -> State: def retrieve(state: State, top_n: int = 2 * len(USER_PREFERENCES)) -> State:
# Search for relevant documents # Search for relevant documents (with scores if available)
retrieved_docs = vector_store.similarity_search( retrieved_docs = vector_store.similarity_search(
"Categories: " + ", ".join(state["preferences"]), k=20 "Show the most interesting articles about the following topics: "
+ ", ".join(state["preferences"]),
k=top_n * 20, # Chunks, not complete stories
return_score=True
if hasattr(vector_store, "similarity_search_with_score")
else False,
) )
# If you're using chunks, group them back into complete stories # If scores are returned, unpack (doc, score) tuples; else, set score to None
story_groups = {} docs_with_scores = []
if retrieved_docs and isinstance(retrieved_docs[0], tuple):
for doc, score in retrieved_docs:
docs_with_scores.append((doc, score))
else:
for doc in retrieved_docs: for doc in retrieved_docs:
docs_with_scores.append((doc, None))
# Group chunks by story_id and collect their scores
story_groups = {}
for doc, score in docs_with_scores:
story_id = doc.metadata.get("story_id") story_id = doc.metadata.get("story_id")
if story_id not in story_groups: if story_id not in story_groups:
story_groups[story_id] = [] story_groups[story_id] = []
story_groups[story_id].append(doc) story_groups[story_id].append((doc, score))
# Reconstruct complete stories or use the best chunk per story # Aggregate max score per story and reconstruct complete stories
story_scores = {}
complete_stories = [] complete_stories = []
for story_id, chunks in story_groups.items(): for story_id, chunks_scores in story_groups.items():
chunks = [doc for doc, _ in chunks_scores]
scores = [s for _, s in chunks_scores if s is not None]
max_score = max(scores) if scores else None
story_scores[story_id] = max_score
if len(chunks) == 1: if len(chunks) == 1:
complete_stories.append(chunks[0]) complete_stories.append((chunks[0], max_score))
else: else:
# Combine chunks back into complete story
combined_content = "\n\n".join( combined_content = "\n\n".join(
chunk.page_content chunk.page_content
for chunk in sorted( for chunk in sorted(
@@ -75,9 +93,21 @@ def retrieve(state: State, top_n: int = 5) -> State:
page_content=combined_content, page_content=combined_content,
metadata=chunks[0].metadata, # Use metadata from first chunk metadata=chunks[0].metadata, # Use metadata from first chunk
) )
complete_stories.append(complete_story) complete_stories.append((complete_story, max_score))
return {"context": complete_stories[:top_n]} # Sort stories by max_score descending (None scores go last)
complete_stories_sorted = sorted(
complete_stories, key=lambda x: (x[1] is not None, x[1]), reverse=True
)
# Return top_n stories
top_stories = [doc for doc, _ in complete_stories_sorted[:top_n]]
return {
"preferences": state["preferences"],
"context": top_stories,
"answer": state.get("answer", ""),
"summaries": state.get("summaries", []),
}
def generate_structured_summaries(state: State): def generate_structured_summaries(state: State):