Improved retrieval step with relevance ranking
This commit is contained in:
56
indexing.py
56
indexing.py
@@ -18,7 +18,7 @@ from hn import HackerNewsClient, Story
|
||||
from scrape import JinaScraper
|
||||
|
||||
NUM_STORIES = 20
|
||||
USER_PREFERENCES = ["Machine Learning", "Linux", "Open-Source"]
|
||||
USER_PREFERENCES = ["Machine Learning", "Programming", "Robotics"]
|
||||
ENABLE_SLACK = True # Send updates to Slack, need to set SLACK_BOT_TOKEN env var
|
||||
ENABLE_MLFLOW_TRACING = False # Use MLflow (at http://localhost:5000) for tracing
|
||||
|
||||
@@ -44,27 +44,45 @@ class State(TypedDict):
|
||||
summaries: list[dict]
|
||||
|
||||
|
||||
def retrieve(state: State, top_n: int = 5) -> State:
|
||||
# Search for relevant documents
|
||||
def retrieve(state: State, top_n: int = 2 * len(USER_PREFERENCES)) -> State:
|
||||
# Search for relevant documents (with scores if available)
|
||||
retrieved_docs = vector_store.similarity_search(
|
||||
"Categories: " + ", ".join(state["preferences"]), k=20
|
||||
"Show the most interesting articles about the following topics: "
|
||||
+ ", ".join(state["preferences"]),
|
||||
k=top_n * 20, # Chunks, not complete stories
|
||||
return_score=True
|
||||
if hasattr(vector_store, "similarity_search_with_score")
|
||||
else False,
|
||||
)
|
||||
|
||||
# If you're using chunks, group them back into complete stories
|
||||
# If scores are returned, unpack (doc, score) tuples; else, set score to None
|
||||
docs_with_scores = []
|
||||
if retrieved_docs and isinstance(retrieved_docs[0], tuple):
|
||||
for doc, score in retrieved_docs:
|
||||
docs_with_scores.append((doc, score))
|
||||
else:
|
||||
for doc in retrieved_docs:
|
||||
docs_with_scores.append((doc, None))
|
||||
|
||||
# Group chunks by story_id and collect their scores
|
||||
story_groups = {}
|
||||
for doc in retrieved_docs:
|
||||
for doc, score in docs_with_scores:
|
||||
story_id = doc.metadata.get("story_id")
|
||||
if story_id not in story_groups:
|
||||
story_groups[story_id] = []
|
||||
story_groups[story_id].append(doc)
|
||||
story_groups[story_id].append((doc, score))
|
||||
|
||||
# Reconstruct complete stories or use the best chunk per story
|
||||
# Aggregate max score per story and reconstruct complete stories
|
||||
story_scores = {}
|
||||
complete_stories = []
|
||||
for story_id, chunks in story_groups.items():
|
||||
for story_id, chunks_scores in story_groups.items():
|
||||
chunks = [doc for doc, _ in chunks_scores]
|
||||
scores = [s for _, s in chunks_scores if s is not None]
|
||||
max_score = max(scores) if scores else None
|
||||
story_scores[story_id] = max_score
|
||||
if len(chunks) == 1:
|
||||
complete_stories.append(chunks[0])
|
||||
complete_stories.append((chunks[0], max_score))
|
||||
else:
|
||||
# Combine chunks back into complete story
|
||||
combined_content = "\n\n".join(
|
||||
chunk.page_content
|
||||
for chunk in sorted(
|
||||
@@ -75,9 +93,21 @@ def retrieve(state: State, top_n: int = 5) -> State:
|
||||
page_content=combined_content,
|
||||
metadata=chunks[0].metadata, # Use metadata from first chunk
|
||||
)
|
||||
complete_stories.append(complete_story)
|
||||
complete_stories.append((complete_story, max_score))
|
||||
|
||||
return {"context": complete_stories[:top_n]}
|
||||
# Sort stories by max_score descending (None scores go last)
|
||||
complete_stories_sorted = sorted(
|
||||
complete_stories, key=lambda x: (x[1] is not None, x[1]), reverse=True
|
||||
)
|
||||
|
||||
# Return top_n stories
|
||||
top_stories = [doc for doc, _ in complete_stories_sorted[:top_n]]
|
||||
return {
|
||||
"preferences": state["preferences"],
|
||||
"context": top_stories,
|
||||
"answer": state.get("answer", ""),
|
||||
"summaries": state.get("summaries", []),
|
||||
}
|
||||
|
||||
|
||||
def generate_structured_summaries(state: State):
|
||||
|
||||
Reference in New Issue
Block a user