feat: Reworked chunking and retrieval logic to operate on entire stories instead of chunks.
This commit is contained in:
4
.gitignore
vendored
4
.gitignore
vendored
@@ -13,5 +13,5 @@ wheels/
|
|||||||
mlruns/
|
mlruns/
|
||||||
mlartifacts/
|
mlartifacts/
|
||||||
|
|
||||||
# ChromaDB
|
# Weaviate vector store
|
||||||
chroma_db/
|
weaviate/
|
||||||
21
classify.py
Normal file
21
classify.py
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
from langchain_core.documents import Document
|
||||||
|
from langchain_core.language_models import BaseChatModel
|
||||||
|
|
||||||
|
|
||||||
|
def categorize(doc: Document, llm: BaseChatModel) -> set[str]:
|
||||||
|
# Create a prompt for category extraction
|
||||||
|
prompt = f"""
|
||||||
|
Extract up to 3 relevant categories from the following document.
|
||||||
|
Return only the category names as a list of JSON strings.
|
||||||
|
|
||||||
|
If you cannot find any relevant categories, return an empty list.
|
||||||
|
|
||||||
|
Title: {doc.metadata.get('title', 'No title')}
|
||||||
|
Content: {doc.page_content}...
|
||||||
|
|
||||||
|
Categories:"""
|
||||||
|
|
||||||
|
# Get response from LLM
|
||||||
|
result = llm.with_structured_output(method="json_mode").invoke(prompt)
|
||||||
|
categories = result.get("categories", [])
|
||||||
|
return set(categories)
|
||||||
25
compose.yml
Normal file
25
compose.yml
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
services:
|
||||||
|
weaviate:
|
||||||
|
command:
|
||||||
|
- --host
|
||||||
|
- 0.0.0.0
|
||||||
|
- --port
|
||||||
|
- "8080"
|
||||||
|
- --scheme
|
||||||
|
- http
|
||||||
|
image: cr.weaviate.io/semitechnologies/weaviate:1.31.4
|
||||||
|
ports:
|
||||||
|
- 8080:8080
|
||||||
|
- 50051:50051
|
||||||
|
volumes:
|
||||||
|
- ./weaviate:/var/lib/weaviate
|
||||||
|
restart: on-failure
|
||||||
|
environment:
|
||||||
|
QUERY_DEFAULTS_LIMIT: 25
|
||||||
|
AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: "true"
|
||||||
|
PERSISTENCE_DATA_PATH: "/var/lib/weaviate"
|
||||||
|
ENABLE_API_BASED_MODULES: "true"
|
||||||
|
ENABLE_MODULES: "text2vec-openai,generative-openai"
|
||||||
|
CLUSTER_HOSTNAME: "node1"
|
||||||
|
OPENAI_APIKEY: ${OPENAI_API_KEY}
|
||||||
|
DISABLE_TELEMETRY: "true"
|
||||||
30
hn.py
30
hn.py
@@ -1,3 +1,4 @@
|
|||||||
|
import asyncio
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
import dateutil.parser
|
import dateutil.parser
|
||||||
@@ -16,16 +17,16 @@ class Story(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class HackerNewsClient:
|
class HackerNewsClient:
|
||||||
def __init__(self, client: httpx.Client | None = None):
|
def __init__(self, client: httpx.AsyncClient | None = None):
|
||||||
base_url = "https://hn.algolia.com/api/v1"
|
base_url = "https://hn.algolia.com/api/v1"
|
||||||
if client:
|
if client:
|
||||||
client.base_url = base_url
|
client.base_url = base_url
|
||||||
self._client = client
|
self._client = client
|
||||||
else:
|
else:
|
||||||
self._client = httpx.Client(base_url=base_url)
|
self._client = httpx.AsyncClient(base_url=base_url)
|
||||||
|
|
||||||
def get_top_stories(self, limit: int = 10) -> list[Story]:
|
async def get_top_stories(self, limit: int = 10) -> list[Story]:
|
||||||
resp = self._client.get(
|
resp = await self._client.get(
|
||||||
"search",
|
"search",
|
||||||
params={"tags": "front_page", "hitsPerPage": limit, "page": 0},
|
params={"tags": "front_page", "hitsPerPage": limit, "page": 0},
|
||||||
)
|
)
|
||||||
@@ -40,7 +41,24 @@ class HackerNewsClient:
|
|||||||
for hit in resp.json().get("hits", [])
|
for hit in resp.json().get("hits", [])
|
||||||
]
|
]
|
||||||
|
|
||||||
def get_item(self, item_id):
|
async def get_item(self, item_id):
|
||||||
resp = self._client.get(f"items/{item_id}")
|
resp = await self._client.get(f"items/{item_id}")
|
||||||
resp.raise_for_status()
|
resp.raise_for_status()
|
||||||
return resp.json()
|
return resp.json()
|
||||||
|
|
||||||
|
async def close(self):
|
||||||
|
"""Close the underlying HTTP client."""
|
||||||
|
|
||||||
|
if self._client and not self._client.is_closed:
|
||||||
|
await self._client.aclose()
|
||||||
|
|
||||||
|
def __del__(self):
|
||||||
|
"""Ensure the HTTP client is closed when the object is deleted."""
|
||||||
|
try:
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
if loop.is_running():
|
||||||
|
loop.create_task(self.close())
|
||||||
|
else:
|
||||||
|
loop.run_until_complete(self.close())
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|||||||
189
indexing.py
189
indexing.py
@@ -1,119 +1,242 @@
|
|||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
from typing import TypedDict
|
from typing import Iterable, TypedDict
|
||||||
|
|
||||||
import langchain
|
import langchain
|
||||||
import langchain.chat_models
|
import langchain.chat_models
|
||||||
import langchain.hub
|
import langchain.prompts
|
||||||
import langchain.text_splitter
|
import langchain.text_splitter
|
||||||
import langchain_chroma
|
|
||||||
import langchain_core
|
import langchain_core
|
||||||
import langchain_core.documents
|
import langchain_core.documents
|
||||||
import langchain_openai
|
import langchain_openai
|
||||||
|
import langchain_weaviate
|
||||||
import langgraph.graph
|
import langgraph.graph
|
||||||
import mlflow
|
|
||||||
|
|
||||||
|
import weaviate
|
||||||
from hn import HackerNewsClient, Story
|
from hn import HackerNewsClient, Story
|
||||||
from scrape import JinaScraper
|
from scrape import JinaScraper
|
||||||
|
|
||||||
llm = langchain.chat_models.init_chat_model(
|
llm = langchain.chat_models.init_chat_model(
|
||||||
model="gpt-4.1-nano", model_provider="openai"
|
model="gpt-4o-mini", model_provider="openai"
|
||||||
)
|
)
|
||||||
embeddings = langchain_openai.OpenAIEmbeddings(model="text-embedding-3-small")
|
embeddings = langchain_openai.OpenAIEmbeddings(model="text-embedding-3-large")
|
||||||
vector_store = langchain_chroma.Chroma(
|
|
||||||
collection_name="hn_stories",
|
weaviate_client = weaviate.connect_to_local()
|
||||||
embedding_function=embeddings,
|
vector_store = langchain_weaviate.WeaviateVectorStore(
|
||||||
persist_directory="./chroma_db",
|
weaviate_client,
|
||||||
create_collection_if_not_exists=True,
|
index_name="hn_stories",
|
||||||
|
text_key="page_content",
|
||||||
|
embedding=embeddings,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class State(TypedDict):
|
class State(TypedDict):
|
||||||
question: str
|
preferences: Iterable[str]
|
||||||
context: list[langchain_core.documents.Document]
|
context: list[langchain_core.documents.Document]
|
||||||
answer: str
|
answer: str
|
||||||
|
|
||||||
|
|
||||||
# Define application steps
|
|
||||||
def retrieve(state: State):
|
def retrieve(state: State):
|
||||||
retrieved_docs = vector_store.similarity_search(state["question"], k=10)
|
# Search for relevant documents
|
||||||
return {"context": retrieved_docs}
|
retrieved_docs = vector_store.similarity_search(
|
||||||
|
"Categories: " + ", ".join(state["preferences"]), k=10
|
||||||
|
)
|
||||||
|
|
||||||
|
# If you're using chunks, group them back into complete stories
|
||||||
|
story_groups = {}
|
||||||
|
for doc in retrieved_docs:
|
||||||
|
story_id = doc.metadata.get("story_id")
|
||||||
|
if story_id not in story_groups:
|
||||||
|
story_groups[story_id] = []
|
||||||
|
story_groups[story_id].append(doc)
|
||||||
|
|
||||||
|
# Reconstruct complete stories or use the best chunk per story
|
||||||
|
complete_stories = []
|
||||||
|
for story_id, chunks in story_groups.items():
|
||||||
|
if len(chunks) == 1:
|
||||||
|
complete_stories.append(chunks[0])
|
||||||
|
else:
|
||||||
|
# Combine chunks back into complete story
|
||||||
|
combined_content = "\n\n".join(
|
||||||
|
chunk.page_content
|
||||||
|
for chunk in sorted(
|
||||||
|
chunks, key=lambda x: x.metadata.get("chunk_index", 0)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
complete_story = langchain_core.documents.Document(
|
||||||
|
page_content=combined_content,
|
||||||
|
metadata=chunks[0].metadata, # Use metadata from first chunk
|
||||||
|
)
|
||||||
|
complete_stories.append(complete_story)
|
||||||
|
|
||||||
|
return {"context": complete_stories[:5]} # Limit to top 5 stories
|
||||||
|
|
||||||
|
|
||||||
def generate(state: State):
|
def generate(state: State):
|
||||||
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
||||||
prompt = langchain.hub.pull("rlm/rag-prompt")
|
|
||||||
messages = prompt.invoke({"question": state["question"], "context": docs_content})
|
prompt = langchain.prompts.PromptTemplate(
|
||||||
|
input_variables=["preferences", "context"],
|
||||||
|
template=(
|
||||||
|
"You are a helpful assistant that can provide updates on technology topics based on the topics a user has expressed interest in and additional context.\n\n"
|
||||||
|
"Please respond in Markdown format and group your answers based on the categories of the items in the context.\n"
|
||||||
|
"If applicable, add hyperlinks to the original source as part of the headline for each story.\n"
|
||||||
|
"Limit your summaries to approximately 100 words per item.\n\n"
|
||||||
|
"Preferences: {preferences}\n\n"
|
||||||
|
"Context:\n{context}\n\n"
|
||||||
|
"Answer:"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
messages = prompt.invoke(
|
||||||
|
{"preferences": state["preferences"], "context": docs_content}
|
||||||
|
)
|
||||||
response = llm.invoke(messages)
|
response = llm.invoke(messages)
|
||||||
return {"answer": response.content}
|
return {"answer": response.content}
|
||||||
|
|
||||||
|
|
||||||
def run_query(question: str):
|
def run_query(preferences: Iterable[str]):
|
||||||
graph_builder = langgraph.graph.StateGraph(State).add_sequence([retrieve, generate])
|
graph_builder = langgraph.graph.StateGraph(State).add_sequence([retrieve, generate])
|
||||||
graph_builder.add_edge(langgraph.graph.START, "retrieve")
|
graph_builder.add_edge(langgraph.graph.START, "retrieve")
|
||||||
graph = graph_builder.compile()
|
graph = graph_builder.compile()
|
||||||
|
|
||||||
response = graph.invoke({"question": question})
|
response = graph.invoke(State(preferences=preferences, context=[], answer=""))
|
||||||
print(response["answer"])
|
print(response["answer"])
|
||||||
|
|
||||||
|
|
||||||
|
def get_existing_story_ids() -> set[str]:
|
||||||
|
"""Get the IDs of stories that already exist in the vector store."""
|
||||||
|
try:
|
||||||
|
collection = vector_store._collection
|
||||||
|
existing_ids = set()
|
||||||
|
for doc in collection.iterator():
|
||||||
|
story_id = doc.properties.get("story_id")
|
||||||
|
if story_id:
|
||||||
|
existing_ids.add(story_id)
|
||||||
|
return existing_ids
|
||||||
|
except Exception:
|
||||||
|
logging.warning("Could not retrieve existing story IDs", exc_info=True)
|
||||||
|
return set()
|
||||||
|
|
||||||
|
|
||||||
async def fetch_hn_top_stories(
|
async def fetch_hn_top_stories(
|
||||||
limit: int = 10,
|
limit: int = 10,
|
||||||
) -> list[langchain_core.documents.Document]:
|
) -> list[langchain_core.documents.Document]:
|
||||||
hn = HackerNewsClient()
|
hn = HackerNewsClient()
|
||||||
stories = hn.get_top_stories(limit=limit)
|
stories = await hn.get_top_stories(limit=limit)
|
||||||
|
|
||||||
|
# Get existing story IDs to avoid re-fetching
|
||||||
|
existing_ids = get_existing_story_ids()
|
||||||
|
logging.info(f"Existing story IDs: {len(existing_ids)} found in vector store")
|
||||||
|
|
||||||
|
new_stories = [story for story in stories if story.id not in existing_ids]
|
||||||
|
|
||||||
|
print(f"Found {len(stories)} top stories, {len(new_stories)} are new")
|
||||||
|
|
||||||
|
if not new_stories:
|
||||||
|
print("No new stories to fetch")
|
||||||
|
return []
|
||||||
|
|
||||||
contents = {}
|
contents = {}
|
||||||
|
|
||||||
# Fetch content for each story asynchronously
|
# Fetch content for each new story asynchronously
|
||||||
scraper = JinaScraper(os.getenv("JINA_API_KEY"))
|
scraper = JinaScraper(os.getenv("JINA_API_KEY"))
|
||||||
|
|
||||||
async def _fetch_content(story: Story) -> tuple[str, str]:
|
async def _fetch_content(story: Story) -> tuple[str, str]:
|
||||||
|
try:
|
||||||
if not story.url:
|
if not story.url:
|
||||||
return story.id, story.title
|
return story.id, story.title
|
||||||
return story.id, await scraper.get_content(story.url)
|
return story.id, await scraper.get_content(story.url)
|
||||||
|
except Exception as e:
|
||||||
|
logging.warning(f"Failed to fetch content for story {story.id}: {e}")
|
||||||
|
return story.id, story.title # Fallback to title if content fetch fails
|
||||||
|
|
||||||
tasks = [_fetch_content(story) for story in stories]
|
tasks = [_fetch_content(story) for story in new_stories]
|
||||||
results = await asyncio.gather(*tasks)
|
results = await asyncio.gather(*tasks, return_exceptions=True)
|
||||||
contents = dict(results)
|
|
||||||
|
# Filter out exceptions and convert to dict
|
||||||
|
contents = {}
|
||||||
|
for result in results:
|
||||||
|
if isinstance(result, Exception):
|
||||||
|
logging.error(f"Task failed with exception: {result}")
|
||||||
|
continue
|
||||||
|
if isinstance(result, tuple) and len(result) == 2:
|
||||||
|
story_id, content = result
|
||||||
|
contents[story_id] = content
|
||||||
|
|
||||||
documents = [
|
documents = [
|
||||||
langchain_core.documents.Document(
|
langchain_core.documents.Document(
|
||||||
page_content=contents[story.id],
|
page_content=contents[story.id],
|
||||||
metadata={
|
metadata={
|
||||||
"id": story.id,
|
"story_id": story.id,
|
||||||
"title": story.title,
|
"title": story.title,
|
||||||
"source": story.url,
|
"source": story.url,
|
||||||
"created_at": story.created_at.isoformat(),
|
"created_at": story.created_at.isoformat(),
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
for story in stories
|
for story in new_stories
|
||||||
]
|
]
|
||||||
return documents
|
return documents
|
||||||
|
|
||||||
|
|
||||||
async def main():
|
async def main():
|
||||||
|
import mlflow
|
||||||
|
|
||||||
mlflow.set_tracking_uri("http://localhost:5000")
|
mlflow.set_tracking_uri("http://localhost:5000")
|
||||||
mlflow.set_experiment("langchain-rag-hn")
|
mlflow.set_experiment("langchain-rag-hn")
|
||||||
mlflow.langchain.autolog()
|
mlflow.langchain.autolog()
|
||||||
|
|
||||||
# 1. Load
|
# 1. Load only new stories
|
||||||
stories = await fetch_hn_top_stories(limit=3)
|
new_stories = await fetch_hn_top_stories(limit=20)
|
||||||
|
|
||||||
|
if new_stories:
|
||||||
|
print(f"Processing {len(new_stories)} new stories")
|
||||||
|
|
||||||
|
# Categorize stories (optional)
|
||||||
|
from classify import categorize
|
||||||
|
|
||||||
|
for story in new_stories:
|
||||||
|
categories = categorize(story, llm)
|
||||||
|
story.metadata["categories"] = list(categories)
|
||||||
|
print(f"Story ID {story.metadata["story_id"]} categorized as: {categories}")
|
||||||
|
|
||||||
# 2. Split
|
# 2. Split
|
||||||
|
documents_to_store = []
|
||||||
|
for story in new_stories:
|
||||||
|
# If article is short enough, store as-is
|
||||||
|
if len(story.page_content) <= 3000: # Adjust threshold as needed
|
||||||
|
documents_to_store.append(story)
|
||||||
|
else:
|
||||||
|
# For very long articles, chunk but keep story metadata
|
||||||
splitter = langchain.text_splitter.RecursiveCharacterTextSplitter(
|
splitter = langchain.text_splitter.RecursiveCharacterTextSplitter(
|
||||||
chunk_size=1000, chunk_overlap=200
|
chunk_size=2000,
|
||||||
|
chunk_overlap=200,
|
||||||
|
add_start_index=True,
|
||||||
)
|
)
|
||||||
all_splits = splitter.split_documents(stories)
|
chunks = splitter.split_documents([story])
|
||||||
|
# Add chunk info to metadata
|
||||||
|
for i, chunk in enumerate(chunks):
|
||||||
|
chunk.metadata["chunk_index"] = i
|
||||||
|
chunk.metadata["total_chunks"] = len(chunks)
|
||||||
|
documents_to_store.extend(chunks)
|
||||||
|
|
||||||
# 3. Store
|
# 3. Store
|
||||||
_ = vector_store.add_documents(all_splits)
|
_ = vector_store.add_documents(documents_to_store)
|
||||||
|
print(f"Added {len(documents_to_store)} documents to vector store")
|
||||||
|
else:
|
||||||
|
print("No new stories to process")
|
||||||
|
|
||||||
# 4. Query
|
# 4. Query
|
||||||
question = "What are the top stories related to AI and Machine Learning right now?"
|
preferences = ["Software Engineering", "Machine Learning", "Games"]
|
||||||
run_query(question)
|
run_query(preferences)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import asyncio
|
import asyncio
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
|
try:
|
||||||
asyncio.run(main())
|
asyncio.run(main())
|
||||||
|
finally:
|
||||||
|
weaviate_client.close()
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ dependencies = [
|
|||||||
"hackernews>=2.0.0",
|
"hackernews>=2.0.0",
|
||||||
"html2text>=2025.4.15",
|
"html2text>=2025.4.15",
|
||||||
"httpx>=0.28.1",
|
"httpx>=0.28.1",
|
||||||
"langchain-chroma>=0.2.4",
|
"langchain-weaviate>=0.0.5",
|
||||||
"langchain[openai]>=0.3.26",
|
"langchain[openai]>=0.3.26",
|
||||||
"langgraph>=0.5.0",
|
"langgraph>=0.5.0",
|
||||||
"mlflow>=3.1.1",
|
"mlflow>=3.1.1",
|
||||||
|
|||||||
33
scrape.py
33
scrape.py
@@ -1,3 +1,5 @@
|
|||||||
|
import asyncio
|
||||||
|
import logging
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from typing import override
|
from typing import override
|
||||||
|
|
||||||
@@ -6,17 +8,41 @@ import httpx
|
|||||||
|
|
||||||
class TextScraper(ABC):
|
class TextScraper(ABC):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self._client = httpx.AsyncClient()
|
self._client = httpx.AsyncClient(timeout=httpx.Timeout(5.0))
|
||||||
|
|
||||||
async def _fetch_text(self, url: str) -> str:
|
async def _fetch_text(self, url: str) -> str:
|
||||||
"""Fetch the raw HTML content from the URL."""
|
"""Fetch the raw HTML content from the URL."""
|
||||||
|
response = None
|
||||||
|
try:
|
||||||
response = await self._client.get(url)
|
response = await self._client.get(url)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
return response.text
|
return response.text
|
||||||
|
except Exception:
|
||||||
|
logging.warning(f"Failed to fetch text from {url}", exc_info=True)
|
||||||
|
raise
|
||||||
|
finally:
|
||||||
|
if response:
|
||||||
|
await response.aclose()
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
async def get_content(self, url: str) -> str: ...
|
async def get_content(self, url: str) -> str: ...
|
||||||
|
|
||||||
|
async def close(self):
|
||||||
|
"""Close the underlying HTTP client."""
|
||||||
|
if self._client and not self._client.is_closed:
|
||||||
|
await self._client.aclose()
|
||||||
|
|
||||||
|
def __del__(self):
|
||||||
|
"""Ensure the HTTP client is closed when the object is deleted."""
|
||||||
|
try:
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
if loop.is_running():
|
||||||
|
loop.create_task(self.close())
|
||||||
|
else:
|
||||||
|
loop.run_until_complete(self.close())
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
class Html2textScraper(TextScraper):
|
class Html2textScraper(TextScraper):
|
||||||
@override
|
@override
|
||||||
@@ -39,12 +65,13 @@ class JinaScraper(TextScraper):
|
|||||||
def __init__(self, api_key: str | None = None):
|
def __init__(self, api_key: str | None = None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if api_key:
|
if api_key:
|
||||||
self._client.headers.update({"Authorization": "Bearer {api_key}"})
|
self._client.headers.update({"Authorization": f"Bearer {api_key}"})
|
||||||
|
|
||||||
@override
|
@override
|
||||||
async def get_content(self, url: str) -> str:
|
async def get_content(self, url: str) -> str:
|
||||||
print(f"Fetching content from: {url}")
|
print(f"Fetching content from: {url}")
|
||||||
try:
|
try:
|
||||||
return await self._fetch_text(f"https://r.jina.ai/{url}")
|
return await self._fetch_text(f"https://r.jina.ai/{url}")
|
||||||
except httpx.HTTPStatusError:
|
except Exception:
|
||||||
|
logging.warning(f"Failed to fetch content from {url}", exc_info=True)
|
||||||
return ""
|
return ""
|
||||||
|
|||||||
Reference in New Issue
Block a user