Files
langchain-hn-rag/indexing.py
2025-07-01 09:26:52 +02:00

115 lines
3.2 KiB
Python

import os
from typing import TypedDict
import langchain
import langchain.chat_models
import langchain.hub
import langchain.text_splitter
import langchain_core
import langchain_core.documents
import langchain_core.vectorstores
import langchain_openai
import langgraph
import langgraph.graph
import mlflow
from hn import HackerNewsClient, Story
from scrape import JinaScraper
async def fetch_hn_top_stories(
limit: int = 10,
) -> list[langchain_core.documents.Document]:
hn = HackerNewsClient()
stories = hn.get_top_stories(limit=limit)
contents = {}
# Fetch content for each story asynchronously
scraper = JinaScraper(os.getenv("JINA_API_KEY"))
async def _fetch_content(story: Story) -> tuple[str, str]:
if not story.url:
return story.id, story.title
return story.id, await scraper.get_content(story.url)
tasks = [_fetch_content(story) for story in stories]
results = await asyncio.gather(*tasks)
contents = dict(results)
documents = [
langchain_core.documents.Document(
page_content=contents[story.id],
metadata={
"id": story.id,
"title": story.title,
"source": story.url,
"created_at": story.created_at.isoformat(),
},
)
for story in stories
]
return documents
async def main():
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("langchain-rag-hn")
mlflow.langchain.autolog()
llm = langchain.chat_models.init_chat_model(
model="gpt-4o-mini", model_provider="openai"
)
embeddings = langchain_openai.OpenAIEmbeddings(model="text-embedding-3-small")
vector_store = langchain_core.vectorstores.InMemoryVectorStore(embeddings)
# 1. Load
stories = await fetch_hn_top_stories(limit=20)
# 2. Split
splitter = langchain.text_splitter.RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=200
)
all_splits = splitter.split_documents(stories)
# 3. Store
_ = vector_store.add_documents(all_splits)
# 4. Query
prompt = langchain.hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
context: list[langchain_core.documents.Document]
answer: str
# Define application steps
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"], k=10)
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke(
{"question": state["question"], "context": docs_content}
)
response = llm.invoke(messages)
return {"answer": response.content}
# Compile application and test
graph_builder = langgraph.graph.StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(langgraph.graph.START, "retrieve")
graph = graph_builder.compile()
response = graph.invoke(
{"question": "Are there any news stories related to AI and Machine Learning?"}
)
print(response["answer"])
if __name__ == "__main__":
import asyncio
asyncio.run(main())